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Abstract 
Anti-aliasing filters have been used in video cameras since 

Pritchard patented the first filter for RCA in 1971.  Anti-aliasing 
filters have been used in consumer digital still cameras at least 
since 1996, when Kodak introduced the Kodak Digital Science 
DC40 camera (now called the Kodak DC40 digital camera).  This 
paper will look at the reasons for having an anti-aliasing filter, 
some of the artifacts that remain with an anti-aliasing filter, and 
the system parameters that make an anti-aliasing filter 
unnecessary.  

Sampled Systems  
Digital cameras are an example of a two-dimensional sampled 

imaging system.  Sampled imaging systems can misrepresent high 
spatial frequencies as low spatial frequencies.  This artifact is 
called “aliasing.”  To prevent aliasing there must be at least two 
pixels for each cycle at the highest frequency the camera is 
intended to capture.  There must be a pixel to capture the dark part 
of the cycle and a pixel to capture the bright part of the cycle.  
Aliasing occurs when the spatial frequency content in the optical 
image exceeds half the sampling frequency.  This is sometimes 
called the Nyquist frequency.  A bar target at the Nyquist 
frequency is shown in Figure 1.  If the target had more bars there 

would not be enough pixels to represent the required number of 
black-to-white transitions.  

To prevent aliasing the optics have to attenuate spatial 
frequencies above the Nyquist frequency.  Lenses can be designed 
to attenuate spatial frequencies above Nyquist by increasing the 
size of the point spread function, but it is very hard to get field and 
f/number independent control of the point spread function.  An 
anti-aliasing filter is usually added to the optical path to provide a 
fixed amount of change to the point spread function that limits the 
spatial frequency content of the image. 

 

Nyquist Domain Graph 
A Nyquist domain graph is the locus of the Nyquist frequency 

in a two-dimensional Fourier domain.  The MTF of the optical 
system should go to zero outside the Nyquist domain.  A small part 
of a Bayer imager is shown in Figure 2, and Figure 3 is the 
corresponding Nyquist domain graph.  The units are in cycles per 
sample.  A magnitude of one corresponds to one cycle per sample.  
One half cycle per sample is the Nyquist frequency.  
Computationally, each point on the graph corresponds to one 
divided by two times the color-dependent pixel pitch in each 
direction.  The Nyquist domain graph for the Bayer pattern has an 
outer diamond that corresponds to the green pixels and an inner 

Figure 1. Bar target at Nyquist frequency 

Figure 2. Bayer pattern 

Figure 3. Nyquist domain 



 

square that corresponds to the red and blue pixels.  Ideally, the 
system MTF should go to zero outside the Nyquist domain.  A 
more complete discussion of the Nyquist domain graph is in the 
first reference [1]. 

It is possible to make anti-aliasing filters that are color-
dependent, but these filters are expensive [2].  In practice, the filter 
is usually matched to the green channel, and the MTF goes to zero 
at the green channel Nyquist.  The red and blue channels can still 
alias.  For most systems, aliasing is a small periodic change in 
brightness, but if a colored edge falls on a pixel boundary, a color 
interpolation error may occur.  Single-pixel highlights or very 
high-contrast transitions tend to produce color interpolation errors.  
These errors are serious because they are not merely a small 
change in hue but quite often the name of the color changes.   

Anti-Aliasing Filters 
There are a number of types of optical anti-aliasing filters; 

arrays of cones or pyramids can go in front of the lens or at the 
stop, and regular or random diffraction gratings can also be used 
anywhere in the optical path.  The most common filter is the 
birefringent quartz filter.  Quartz filters can result in different 
patterns depending on the number of layers and the orientation.  
Three-layer quartz filters can produce four, seven, or eight spots.  
The most common quartz filter is the four spot filter.  The four 
spot filter produces the best cutoff with the least blur.  The 
diffractive filters tend to be a uniform circle or square that must be 
as wide as 2 pixels to cut off at the Nyquist frequency.  The four 
spot filter only has to be one pixel wide in each direction to cut off 
at the Nyquist frequency.  The birefringent filter patterns with 
more than four spots basically fill in the four spot pattern so they 
act somewhat like the uniform circle or square.   

An intuitive approach to analyzing anti-aliasing filters in one 
dimension starts with projecting an image point into the scene.  A 
four spot filter is reduced to two spots in one dimension.  Figure 4 
shows an image point projected backwards through the lens and 

the anti-aliasing filter into the object plane.  Two object points 
contribute to each image point.  The modulation should be zero if 
these object points are superimposed on an object that produces an 
image at the Nyquist frequency.  The cosine image in Figure 5 is 
shown at the Nyquist frequency.  Each pair of matching dots 
(black, gray, and white) is separated by one pixel pitch.  The signal 
due to each pair of dots always adds to one; this will suppress any 
modulation as a result of the cosine image.  The dots are shown at 
a number of discrete positions but the modulation is zero 
everywhere as the dots slide along the cosine.  The uniform spot 
must be two pixel pitches wide to always add to zero.  Notice the 
gray rectangle is one pixel pitch wide and it will sum to a value 

that varies as it slides over the cosine.  The black rectangle will 
always sum to the same number because it is one period wide at 
the Nyquist frequency. 

Uniform Spot Filter and Four Spot Filter   

The uniform spot does have an advantage.  The MTF of a 
uniform spot is the modulus of a sinc function that oscillates 
between zero and lower and lower peaks past Nyquist.  The four 
spot pattern MTF is the modulus of a cosine that goes back to one 
at the sampling frequency and multiples of the sampling 
frequency.  In general, the lens MTF attenuates past Nyquist to 
prevent aliasing when the four spot filter opens up.  The uniform 
spot MTF and the four spot pattern are shown in Figure 6.  Notice 
the cosine has a little better MTF below the Nyquist frequency.  

The Lens Revisited 
The point spread function for a diffraction-limited lens is an 

Airy disk.  Figure 7 is an image of a modified Airy disk; the outer 
rings have been brightened so they are visible.  Eighty-four 
percent of the power in the Airy disk is in the center bright spot, 
therefore, the diameter is usually taken to be the diameter of the 
center spot.  The diameter of the center spot is: 

D = 2.44 * λ * N       (1)  

Scene Anti-aliasing filter 
Image point 

Figure 4. image point projected into object plane 
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Figure 5. Two-spot and uniform anti-aliasing filter 

Figure 6. Two-spot and uniform spot MTF 
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where D is the diameter, λ is the wavelength, and N is the 
f/number.  D will be in the same units as the wavelength. 

The lens point spread function limits aliasing in some 
cameras.  The pixels used in consumer cameras have become 
smaller.  Some cameras have pixels around 2 �m.  At pixel sizes 
below 2 �m, the diffraction-limited (read theoretically perfect) lens 
MTF is sufficient to prevent aliasing and color interpolation error.  
Imager lenslets limit the lens f/number to about f/3 because larger 
cone angles overfill the pixel active area.  At f/3 the lens has a 4 
�m point spread function.  The system MTF drops to about 20% 
when there are 3 pixels per point spread function so at f/3 the lens 
will suppress aliasing for pixels a little larger than 1 �m.  At f/8 the 
lens will have an 11 �m point spread function and will suppress 
aliasing almost completely for a 2 �m pixel pitch imager.  

 
Interpolation Error  

Interpolation error looks like aliasing but it is not aliasing.  
The bar pattern in Figure 8 results in an image pattern with low 
frequency modulation even though it is sampled at more than 2 
samples per cycle.  This happens because the phase of the samples 
changes from one cycle to the next.  Another example is shown in 
Figure 9.  The sampled sine wave in the upper graph of the figure 

is sampled at greater than two samples per cycle, but the 
reconstruction below has low frequency modulation that looks like 
aliasing.  The sampling meets the criteria of the Whitaker Shannon 
law as found in Gaskill [3]: “Any band-limited function can be 
specified exactly by its sampled values, taken at regular intervals, 
provided that these intervals do not exceed some critical sampling 
interval.” To stay below the critical sampling interval there must 
be more than two sampling intervals for each cycle at the band 
limit.  If this condition is met, the function can be reconstructed 
from the sampled data; if this criteria is exceeded, aliasing will 
result.  Reconstruction [4] is often ignored, however, 
reconstruction is an important part of displaying a sampled image.  
The display should have more pixels than the camera, and sinc 
interpolation, or any other appropriate interpolation function, 
should be used to up-sample the captured image to the display size.  
The sinc convolution in the spatial domain is equivalent to 
multiplying by a rect function in the frequency domain. This 
suppresses higher order copies of the image frequency spectrum.   

The display must have about four times as many pixels as the 
capture device in each direction to reduce reconstruction errors to 
about 10% modulation.  Ten times as many pixels will reduce the 
modulation to a few percent.  The worst case low frequency 
modulation can be determined by splitting two samples across the 
peak of a sine wave at the Nyquist frequency, as shown in Figure 
10.  It is rare for a scene to contain a large area at a spatial 

frequency exactly at the Nyquist, so the phase of periodic objects 

 

Figure 7. Airy disk 

 

Figure9. Sampled image near Nyquist 

Figure 8. interpolation error 

Figure 10. Worst case modulation 



 

tends to vary from sampling exactly at the peak to splitting the 
samples across the peak over a large number of pixels.  This 
produces the low frequency modulation in Figures 8 and 9. 

Conclusions 
 Aliasing can be avoided in sampled images by band-limiting 
the optical image to the Nyquist frequency, although most 
consumer cameras do not band-limit all of the channels to the 
Nyquist frequency.  The four spot birefringent filter does a good 
job of preventing color interpolation error in digital cameras, 
however, the filter is usually chosen to prevent aliasing in the 
green channel and allows aliasing in the red and blue channel.  An 
image might exhibit an artifact that looks like aliasing even if the 
optical image is band-limited to the Nyquist frequency; this artifact 
can be corrected if proper reconstruction is applied to the image.  
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